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ABSTRACT 

The superior piezoelectric and dielectric properties of the relaxor based piezoelectric 

single crystals (PMN-PT) render them as prime candidates for Navy sonar detectors as well 

as in broad band medical ultrasonic imaging devices. Production of phased array probes 

utilizing these types of high performance ceramics requires dicing these crystals to arrays 

with pitches of less than the desired wavelength, ranging from tens to hundreds of 

micrometers. However, the relaxor based single crystals are very brittle with fracture 

toughness of about a third to a half that of typical PZT ceramics ( mMPa8.04.0  ).  

Excessive chipping and cracking, either during the cutting or poling process, have been 

reported as major hurdles in processing, leading to spurious resonance and degradation of the 

distance resolution. In addition, residual stress from the cutting process could be major 

reliability degradation if it is not well quantified and minimized. 

In this work, we experimentally analyzed the machining induced damage in a group of 

Lead Magnesium Niobate-Lead Titanate solid solution single crystal {(1-

x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT)} under simulated process parameters for cutting 

speeds and down feeds. The machined surfaces are examined by non-contact optical 

profilometer for planarity and roughness, scanning electron microscopy for subsurface 

damage, and by micro-raman spectroscopic analysis and X-ray diffraction analysis to 

uncover machining induced phase transformations.  The analysis reveals the preferred 

process parameters for minimal machining induced damages.   
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CHAPTER 1.  INTRODUCTION AND LITERATURE REVIEW 

            The single crystals wafers of lead magnesium niobate-lead titanate solid solution, (1-

x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT) are very attractive for sonar and ultrasonic 

detectors applications because of their high piezoelectric coefficients and good 

electromechanical coupling. Correspondingly, high yield wafer manufacturing to produce 

large PMN-PT wafers with controlled surface roughness and small kerf loss is essential. In 

this work, the quality of a wire saw cut surface of these crystals are studied experimentally to 

show the limits on surface roughness and subsurface damage. 

  The traditional manufacturing process to produce wafers with controlled surface 

roughness utilizes an inner diameter (ID) saw [1-3] in the slicing single crystalline ingot, 

followed by various grinding, polishing, and cleaning processes. The principle of ID saw is 

shown in Fig.1.1. It is made of a stack of thin annular ring blades. The inner perimeter is 

coated with micro-size diamond grits. The outer perimeter of the blade is stretched under 

high tension. The ingot is fed through the center, while the blade traverses through the ingot, 

and then a slice of wafer is produced. The process of material removal is a “ploughing” 

process. An ID saw is a fast slicing process, thought it suffers from large kerf loss (typically 

350 µm for silicon wafers) and excessive surface roughness and subsurface damage. [1] To 

avoid large kerf loss and increase the wafer surface quality, wire saw-based cutting 

technology [1, 4-7] was developed and gained widespread utilization in the slicing of silicon 

and piezoelectric ceramic wafers. Compared with an ID saw, a wire saw exhibits many 

advantages, such as higher throughput, less wafer-surface damage, lower kerfs loss and 

almost no restrictions on the size of the ingots. [8] 
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or work piece. The material removal rate (MRR) for semi-contact and non-contact cases is 

developed. If the elastic displacement of the wire is significant and slurry viscosity changes 

are negligible, this regime is defined as isoviscous-elastic regime (IE). If the slurry film 

thickness is much more than the elastic displacement of the wire, it is called isoviscous-rigid 

regime (IR). The slurry film thickness and shear stress are defined for both regimes. The 

increase of abrasive grit size increases the material removal rate (MRR) while also increasing 

surface roughness of the final product.  

The abrasive grit shape is also important in wire saw MRR. If the abrasive grit has a 

high aspect ratio (elongated grit), it will not rotate in the laminar flow of slurry, which will 

decrease MRR, while grits having an aspect ratio close to one will rotate more easily and 

increase the MRR. Accordingly, freshly applied slurry will have grits with sharp corners that 

will increase the MRR. The increase of viscosity of the slurry due to debris from the work 

piece may cause agglomeration and reduce MRR. The wire saw process induces a wavy 

topology with mm scale wavelength, and local roughness in the micro and sub-micron range. 

The origin of such large-scale defects, grooves and wavy topologies are not yet well 

understood. 

Bhagavat et al. [10] defined the material removal rate as a function of the imparted 

energy to the abrasive by hydrodynamic forces. The hydrodynamic film characteristics are 

calculated using the finite element method, which couples Reynolds’ equation of 

hydrodynamics with the elasticity equation of wire. Such an analysis provides the pressure 

distribution and film thickness profiles of slurry film within the cut trench. Across the ingot 

diameter, the pressure starts from zero at the inlet and gradually increases to a maximum 

value, where it starts to decrease towards the downstream exit region as seen in Fig. 1.4(a). 
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The gradual decrease of pressure near the exit is disturbed by a stage in the pressure 

profile that is due to the continuity of slurry flow. The pressure profile is almost constant in 

the transverse direction except near the entrance and exits where it decays to zero. The 

thickness profile of the slurry film shows that the film thickness is large at the inlet, where it 

starts to decrease gradually towards the exit as seen in Fig. 1.4(b). The high slurry film 

thickness at the inlet is due to high wire compliance at the inlet, while the low slurry film 

thickness at the middle is explained by the low wire compliance in this region. The minimum 

slurry film thickness at the exit is explained by the low slurry pressure. The increase of slurry 

viscosity and wire speed Vx increases the slurry film thickness, while the increase of the wire 

bow angle decreases the film thickness due to an increase in stiffness of the wire and load on 

the film. The obtained minimum film thickness for a 50 mm ingot was approximately 130 

µm, which is much greater than abrasive grit size. Thus, the mode of cutting is free abrasive 

machining in which the grits roll and indent the work piece to induce material removal. This 

is also validated by the microscopic images of a wire saw sliced wafer which has equal-sized 

pits due to single material removal of floating abrasives as in Fig. 1.5(a). The polished 

surface of a wafer shows scratches due to direct contact of abrasive pressed by the tool onto 

ingot as presented in Fig. 1.5(b). Due to the decrease of slurry film thickness towards the 

exit, the cutting conditions may change for large diameter ingots and poor surface finish 

occurs. Oscillating wire saw machining is necessary for uniform and efficient cutting of large 

diameter ingots. The wire saw machining is taking place in an isoviscous-elastic regime (IE). 

The material removal is proportional to slurry viscosity µ, size of abrasive Dg, slurry pressure 

Ps, square of wire speed Vx, and inversely proportional to square of slurry thickness hs as 

presented in Eq. 1.1[10, 13]. 
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ions, while the B site is occupied by randomly distributed Mg2+, Nb5+, and Ti4+ ions. Recent 

x-ray diffraction studies have shown that PMN- x PT single crystals at room temperature 

have a rhombohedral phase structure (Region Ӏ) when x < 0.3, from which the solid solutions 

exhibit a relaxor behavior and structural phase transition is from the cubic (Pm3m) to the 

rhombohedral (R3m) symmetry, and a tetragonal phase (Region Ш) when x > 0.35 to 0.37 

[15,16], from which the solid solutions show a typical ferroelectric behavior and undergo 

structural phase transition from the cubic (Pm3m) to the tetragonal (P4mm). The region 

(Region Π) which separates the rhombohedral and tetragonal phase is called the 

morphotropic phase boundary (MPB), is most commonly investigated since the crystals from 

this region exhibit the so-called giant piezoelectricity. In this region, the typical relaxor 

properties vanish and, thus, the solid solutions already tend to exhibit a ferroelectric behavior, 

and two structural phase transitions are observed, the first is from the cubic (Pm3m) to the 

tetragonal (P4mm), while the second is from the tetragonal (P4mm) to the monoclinic (Pm) 

one. However, the problem of symmetry in the MPB region seems to be more complex since 

the monoclinic symmetry can coexist with a secondary minority rhombohedral or tetragonal 

phase. Moreover, even the presence of a third minority orthorhombic phase cannot be ruled 

out. Studies have shown that PMN- x PT specimens near the MPB are in a multiphase state 

and have speculated that this may be the cause of increased electromechanical properties [15, 

17, 18]. The phase diagram has been shown in Fig.1.7. In PMN- x PT single crystals, the 

spontaneous polarization direction can be switched to another energetically equivalent 

direction through externally applied loads. In addition of reorienting the polarization, the 

application of external fields can also initiate phase transformations in relaxor PMN-PT (0 ≤ 

x ≤ 0.33). 
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higher yield, lower kerf loss, and lower surface damage. The wire saw process can be used to 

cut all kinds of brittle materials with low surface damage and higher yield. 

In free abrasive based wire saw, rolling and indenting of the abrasive against the work 

piece generates material removal. The bow and tension of the wire transfers a hydrodynamic 

pressure on the abrasive grits through the slurry. The velocity profile of the slurry trapped 

between the wire and sample, occurring due to wire speed, is providing the motion of the 

abrasive grits. The combination of hydrodynamic pressure and the motion of the grits results 

in rolling-indenting motion of grits, which causes material removal in free-abrasive 

machining. The increase of wire bow or tension may cause disruptions in the hydrodynamic 

film, which leads to bare wire-sample direct contact. This direct contact creates scratches on 

the sample, while causing wire breakage. In order to keep the hydrodynamic film, the wire 

velocity in the abrasive-carrying wire-saw process is high. 

Diamond-grit coated steel in the wire-saw process was developed due to the 

disadvantages of the abrasive-slurry wire-saw process. The diamond-grit coated wire-saw 

process leads to fixed abrasive machining. This process has a higher yield and less wire 

breakage in comparison to the abrasive-carrying slurry wire-saw process. In this work, the 

abrasive-grit coated wire-saw process is investigated. 

The wire saw process induces roughness, long waviness and chipping damage on the 

cut surface, as well as subsurface cracks and possible phase transformation, further possibly a 

residually stressed region arises. These damages decrease the quality of the wafers and have 

to be removed by post processes including grinding, lapping, and polishing. However, these 

post processes increase wafer manufacturing costs. 
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Subsurface damage could be reduced by vibration-assisted cutting, because 

intermittent unloading can produce a lateral crack before the median crack fully develops, 

and upon reloading, the lateral crack shields against further median crack penetration. 

Furthermore, intermittent unloading produces shielding even for oblique indentation events 

and intermediate locations of lateral cracks.  

The overall goal of this study is to understand the surface roughness and long 

waviness damage under the abrasive wire cutting and to establish the role of the process 

parameters. Also, vibration-assisted cutting was set to decrease the subsurface damages; 

phase transformation was studied and analyzed by Raman Spectra and X-ray diffraction. 

1.4 Thesis Organization 

The remainder of the dissertation is divided into three chapters. In chapter two, the 

whole experimental procedure is introduced, after wire saw cutting process, the wafer 

surfaces’ roughness and waviness evolution are studied. In chapter three, investigation of the 

phase transition is analyzed. In the last chapter, summary of the study is presented. 
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CHAPTER 2.  EXPERIMENTAL PROCEDURE 

Wire saw experiments are conducted on PMN-PT single crystal piezoelectrical 

ceramics. The dynamic cutting forces, wire curvature, wire axial speed, xV , and feed rate, zV , 

are measured during the wire saw cutting tests. The cutting-induced surface roughness and 

waviness are analyzed for each combination of process parameters with ultrasonic vibration 

assistance or not. Detailed scanning electron microscope (SEM) analyses are carried out to 

understand the variation of the machining-induced surface and sub-surface damage with the 

process parameters. Details of the experimental setup and the corresponding measurements 

for the range of the investigated process parameters are presented in this chapter. 

2.1 Wire Saw Process, Wire Speed, and Feed Speed Measurements 

          A single spool to spool the wire-saw machine is used in the experiments. The wire is 

advanced in one direction and then reversed back to 95% of its length, and this allows a 5% 

refresh rate of the wire per each reversal cycle. The process parameters that can be controlled 

are the wire-rocking angle, the wire speed, xV , down feed speed, zV , wire tension, T, and the 

length of wire used in one reversal of wire, wL . The tension is controlled by wire tension 

pulleys powered by air pressure while the rocking motion is controlled by wire guide pulleys 

as can be seen in Fig. 2.1. 

            In all experiments, the following parameters have been held constant. A fixed wire 

length/cut cycle of 300 ft is utilized. Thus, in every forward advance of the wire, a length of 

ftLw 300  (91.4 m) is transferred from one spool to the other. A water-based coolant 

(Sawzit) at a ratio of 50:1 is used during cutting. 
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average grit sizes of mDg 27 ; and average grit spacing of mLg 69 . The grit spacing of 

DWS5 is very narrow. 

Table 2.1. Diamond impregnated wire properties. 

Wire 

name 

Diameter 

Dw(µm) 

STD 

Dw(µm) 

Grit Size 

Dg(µm) 

STD 

Dg(µm)

Grit Radius

R(µm) 

Lg Grit  

Spacing(µm)  

STD  

Lg(µm)

DWS3 304 3 78 9 39 280 104 

DWS5 252 3 27 5 13.5 69 31 

   

2.4 Vibration Assistance Setup 

             Subsurface damage could be reduced by vibration-assisted cutting, because 

intermittent unloading can produce a lateral crack before the median crack fully develops, 

and upon reloading, the lateral crack shields against further median crack penetration, as 

shown in Fig. 2.4. When the cutting grit first contacts the work piece, the median crack 1 is 

produced, after the grit unloads, the lateral crack 2 initiate, and then reloading the work piece 

produces the median crack 3. At this instant, the lateral crack 2 acts as a barrier against 

further penetration of the median crack, thus achieving the shielding effect. Furthermore, 

intermittent unloading produces shielding even for oblique indentation events and 

intermediate locations of lateral cracks. To investigate the beneficial effects of intermittent 

unloading, vibration-assisted cutting tests and no vibration-assisted cutting tests were carried 

out and compared. For vibration-assisted cutting tests, PMN-PT single crystal sample was 

fixed in the work table vertically by a clamping apparatus while the ultrasonic vibration-

assisted device was located in horizontally and parallel to the wire running direction with its 

tip contacting with the left side of the clamping apparatus as can be seen in Fig. 2.5. 
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2.5. Preliminary Results 

         The goal of this study is to investigate the role of the wire saw process parameters on 

the quality of the produced surfaces, as measured by the resultant surface roughness and 

waviness, surface and subsurface crack length, damage; the role of the vibration cutting on 

possible phase transformation, as analyzed by XRD and Raman Spectrum. 

2.5.1 Roughness Evolution 

          The surface roughness of the cut surfaces was measured using an optical non-contact 

profilometer, Zygo New View 6000, manufactured by Zygo Corporation. A 10x lens was 

used for the measurements. The profilometer has a resolution of depth on the order of three 

nano- meter; the resolution in the horizontal plane is 1.1 μm, while the field of view used is 

0.7x0.53 mm.  

In a stitch measurement, the profilometer took continuous measurements each 

0.7×0.53 mm and stitched them together into one data set. Three stitch measurements, each 

of 0.7×3 mm dimensions, were applied in the direction of cutting for each sample on the left-

middle-right of the cut surface. After the measurements were taken, the data was processed 

using the software MetroPro Version 8.1.5 developed by Zygo company. A high pass 

filtering was applied to remove the surface waviness. The cutoff length was set at 0.8 mm. 

Arithmetic average deviation from the centerline (best fit plane) was obtained. The average 

of three measurements was taken as surface roughness of the test. 

A Scanning Electron Microscope (SEM), JEOL JSM-606LV, was used to image the 

cut-surface topology. The SEM images were taken from the lower half of the sample, on the 

center line of the cut surface.  
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Ductile material removal and brittle fracture was observed in SEM images. The 

condition of point contact between the impregnated diamond and PMN-PT single crystal 

sample was presumed during wire saw cutting process, generally as the same as indentation 

process.   

As discussed by Evans and Marshall [19], removal of plastically deformed material in 

the cutting zone reduces residual stress. This reduces the tendency of lateral crack formation 

in brittle materials. The median crack depth, c, can be compared to measured roughness. Fu 

et al. [20] derived the force on a single grit in ductile mode material removal as presented in 

Eq. 2.2, where y  is yield stress, R is cutting particle radius, and h is cut depth for a single 

particle. 

RhFP yzg 2                                                                                    (2.2) 

The mass continuity of the cutting process gives us Eq. 2.3. 

)()()()(
g

x
go

g
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h
V

L

h

dt
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ShD
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d

A

Volume

dt

d
V 





                 (2.3) 

Volume is the total amount of material removed, pA  is the projected area of the cut 

trench, oL  is the cut length of sample, gL  is the distance between cutting particles, D is width 

of cut trench that can be taken as diameter of wire, S is sliding distance, xV  is the axial speed 

of wire, and zV   is the feed of wire. Solving the cut depth h from Eq. 2.3 yields Eq. 2.4. 

x

z
g V

V
Lh                                                                                                (2.4) 

The force on a single grit, Fzg, can be obtained in terms of process parameters by 

inserting Eq.2.4 into Eq. 2.2 and Eq. 2.5 is obtained. 
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x

z
gyzg V

V
RLFP  2                                                                          (2.5) 

The damage resulting from wire saw cutting is correlated with median crack depth. 

Lawn et al. [21] derived the median crack length using fracture mechanics principles. The 

median crack length is presented in Eq. 2.6.  

 
3

2

2

1

3

2

cot





















cK

P

H

E
C                                                                      (2.6) 

Inserting Eq. 2.5 into Eq. 2.6 gives us Eq. 2.7. 
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The median crack depth, which is the damage due to the wire saw process, is 

presented in terms of the process parameters in Eq. 2.7. The damage is a function of the half 

of the included angle of the grits, ѱ; the modulus of elasticity of ingot, E; the hardness of the 

ingot, H; the fracture toughness of the ingot, Kc; wire properties, feed speed, and wire speed. 

The damage model states that under the same feed speed, if the wire speed is 

increased, the roughness damage will increase, which can be seen in Fig. 2.6, and the 3D 

images of surface roughness are shown in Fig. 2.7. The results also show that sample wafers 

cut by wire DWS5 is more roughness, that’s because compared with the wire DWS3, the 

average impregnated diamond size, average spacing of abrasive grits, and wire cross-section 

diameter of wire DWS5 is much smaller, scratch between the wire DWS5 and the PMN-PT 

single crystals is more seriously. When combined with vibration assistance, the intermittent 

unloading can produce a lateral crack before the median crack fully develops, and upon 
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In a stitch measurement, the profilometer took continuous measurements of 

1.41×1.06 mm and stitches them together into one data set. A low pass filtering was applied, 

and the cutoff length was set at 0.25 mm. Stitch measurements were applied in the direction 

of cutting at the center of the cut surface for each sample. After the measurements were 

taken, the data was processed using the software Metro Pro Version 8.1.5 developed by Zygo 

company. The best fit plane was removed and a low pass filter was applied to get the 

waviness profile of the cut surface. 

The long waviness is induced by the wire drifting that influenced by the combination 

of the oblique cutting force and wire tension, and also the increase of feed speed means the 

increase of oblique cutting forces will lead to a high peak-to-valley value waviness in the 

surface. The increase of the wire tension will lead to a wavy surface with a lower peak-to-

valley value, while decreasing wire tension will lead to a step-like surface with a high peak-

to-valley value. But as the same as roughness, under the same feed speed and wire tension, 

we can see smaller Ra and RMS of waviness with the increase of cutting speed and better 

condition when combined with vibration assistance as shown in Fig. 2.9, since Ra and RMS 

is only the performance that related to cracks initiation, propagation and if scratch seriously 

or not. The 3D images of surface waviness are shown in Fig. 2.10. 
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CHAPTER 3.  PHASE TRANSFORMATION ANALYSIS 

3.1 Introduction 

Recent X-ray diffraction studies have shown that PMN-xPT single crystals at room 

temperature and at zero stress and zero electric field are in a rhombohedral phase when x < 

0.3 and a tetragonal phase when x> 0.35–0.37 [22,23]. The region which separates the 

rhombohedral and tetragonal phase is called the morphotropic phase boundary (MPB). 

Studies have also shown that PMN-xPT and specimens near the morphotropic phase 

boundary (MPB) have an intricate multiphase state consisting of tetragonal, rhombohedral, 

orthorhombic and monoclinic phases MA, MB, MC [23-25].  

The phase of PMN-xPT is dependent on applied fields such as stress, electric field 

and temperature, in addition to the composition. The application of external stress fields can 

initiate phase transformations in relaxor PMN-xPT. Many researchers have shown 

experimental evidence of rhombohedral to orthorhombic (R–O) [26,27], rhombohedral to 

monoclinic (R-M) [28], and rhombohedral to tetragonal (R–T) [29] phase transformations in 

relaxor single crystals under external fields. In the region of PT percentage is no larger than 

0.3(x ≤ 0.3), Viehland and Li [26] measured the unipolar and bipolar strain and electric 

displacement during electric field induced R–O phase transformation in <110> oriented 

PMN–0.3PT single-crystal specimens. McLaughlin et al. showed evidence that electric field 

[27] and stress fields [29] are both capable of inducing an R–O phase transformation in 

PMN–0.32PT single crystals with an engineered domain state, as seen in Fig.3.1. In this 

work, the electrical displacement and strain were measured as a function of stress, electric 

field and temperature. The results were presented as three-dimensional surface plots showing 
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cutting down force were presumed, and then X-ray powder diffraction and Raman Spectra 

were measured for local and partial phase transformation analysis. 

3.2 Experimental Methods 

Under different cutting speed  combined with or no vibration assistance, several 

wafer samples of half circle shape were prepared, and the surfaces of these specimens were 

cleaned by Acetone. X-ray powder diffraction measurements were performed by using a 

high-resolution Siemens D5000 diffractometer with Cu K-alpha radiation confirmed the 

formation of phases with no evidence of any impurities. Copper tube was operated at 

kVV 45 and 30I  mA. The full diffraction patterns at the selected Bragg angle in the 

range of 15o-65o were recorded by using the scanning method with a step o02.0)2(    

and a counting time of 10 seconds. Crystal structure refinements were performed using the 

profile Rietveld method.  

The Raman spectra were collected using a T64000 Y von-Jobin multi-channel triple 

monochromator spectrometer (micro-Raman configuration, backscattering geometry). The 

488 nm argon ion laser excitation line was used. Spot size of 20-30 micrometer, focus of 250 

micrometer, objective of 20 times, wavenumber of 150-1000 cm-1 were set. For better local 

phase transition analysis, especially defining the different phases at the peak and valley 

locations, points scanning along the lines that are parallel or perpendicular to the surface 

waviness direction were delicately chosen and operated.   
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3.3 Results and Discussion 

3.3.1 X-ray Results 

Figure 3.3 presents the comparing of X-ray diffraction pattern of <0 0 1> oriented 

PMN-0.30PT single crystals sample cut by wire saw, ID saw and theoretical generated by 

GSAS software. The same machine information was input, theoretical modeling X-ray 

diffraction patterns of different phase composition were calculated by GSAS software. 

Compared with the theoretical X-ray fitting curve of multiply phases or single phase, detailed 

analysis of the peak broadening reveals the phases in wafer cut by wire saw under different 

cutting down speed and cut by ID saw are different. For example, around the Bragger angle 

range of 44-46o, this very clear and special area could be seen in Fig. 3.4, corresponding to 

the Rhombohedral and Orthorhombic two phases coexistence, there are three theoretical 

peaks very closed to each other, and for only single Orthorhombic phase there are only two 

peaks apart with each other, if compared with the experimental X-ray diffraction patterns of 

each case, it is very easy to find the peak shifts and broadening different between each case 

which means the phases composition different from each other. However, from this 

comparing, we still cannot define the ratio of phase composition in each case, and how the 

phase transition underwent, evenly in all direction or very inhomogeneous locally. It is very 

reasonable to explain the observed shift peak positions and different intensities since the 

lower-symmetry phases exist in this and related systems that of orthorhombic O and the ratio 

of this phase different in each case.  
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modes from the intermediate frequency region can be classified as mixed B-O-B bending and 

O-B-O stretching, while those from the high frequency region as B-O-B stretching.  

The Raman spectra shown in Fig. 3.5 seem to be similar to each other; however, the 

qualitative analysis reveals noticeable changes in these Raman spectra at different locations. 

The most significant difference that can be seen in the frequency range of 500 to 650 cm-1, as 

seen in Fig.3.6 and Fig. 3.7, at different locations of the wafer surface, some Raman modes 

become narrower and even new modes near 500 cm-1 appears, the frequencies and the line 

widths exhibit the characteristic jumps observed in this region.  It is probable that these 

jumps can indicate the changes in the local symmetry between the rhombohedral(R3m), the 

monoclinic symmetry (Pm), and the orthorhombic symmetry (Pmm2). Moreover, as can be 

seen in Fig.3.6, which corresponds to different location cases that perpendicular to the 

waviness and apart of waviness width at 250 µm, characteristic jumps between each case can 

indicate the phases different along the direction perpendicular to waviness. However, as can 

be seen in Fig.3.7, which corresponds to different location cases that parallel to the waviness, 

no very obvious frequencies and line widths jumps could be found, which means along the 

direction that parallel to the waviness direction no much phase transitions occurred, the little 

difference and asymmetry could be possible explained by Lattice distortion or so, even if 

there is phase transition, at most very small partial transformations. 
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CHAPTER 4 SUMMARY AND DISCUSSION 

In this experimental study, the role of wire saw processing parameters on the final 

PMN-PT single crystals wafer surface roughness and waviness were investigated. Several 

analytical tools were utilized including SEM imaging of the subsurface damages; XRD and 

micro-Raman surface analysis to uncover the machining induced phase transformation. 

Based on the result of the parametric study, the following conclusion can be drawn. 

1. Better surface quality can be generated if the force per cutting grit can be 

minimized. Such force is controlled by the ratio of the down feed to wire speed. Accordingly, 

any attempt to increase the down feed speed has to be accompanied by increase in the wire 

speed. Such attempt would be bounded by the wire stability and vibration. 

 2. Reduction of the down feed to the wire speed ratio at the same wire tension has 

showed improved Ra and RMS of the cut surface. 

3. Better surface characteristics could be attained with vibration assistance wire saw 

cutting process, because of lateral crack initiated by intermittent unloading could prevent the 

vertical crack propagation and protect as a shield.  

4. Phase transformation of PMN-PT single crystals can be also minimized by 

lowering the down feed to the wire speed ratio. However, exact reduction level needs further 

investigations. 
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